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ABSTRACT

This document outlines a guidance equation mechanization

for use with ballistic missiles. This technique does not

require pre-launch targeting computations and is therefore

especially suitable for mobile weapons systems.
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SECTION I

INTRODUCTION

The development of a guidance technique suitable for use with any ballistic

missile is presented in this document. This technique is particularly suita-

ble for weapon systems requiring maximum flexibility (mobile systems re-

quiring a minimum operational targeting time). While an example of the

basic equations required for mechanization is given, relatively routine as-

pects of the mechanization (such as data reduction and first stage andvernier

guidance) are not discussed. This mechanization is obviously more compli-

cated than that which would be required if the equations were not self con-

tained (i.e., if targeting operations are carried out at the launch site).

The equations of motion which have been used for the explicit solution on the

free flight trajectory are derived from the assumptions that the earth's

gravitational field varies with the inverse square law and that there is no

atmosphere (see Section 3). The inadequacy of this assumption can be com-

pensated for by empirically determined target offsets, but a considerably

superior method which does not require any targeting operations at the op-

erational site is developed in Section 4.

The only inputs required by the guidance equations are latitude, longitude,

and altitude (above sea level) of the launcher and target. The guidance equa-

tions then compute all other quantities required, including launch azimuth.

The guidance inputs need to be specified sufficiently prior to launch to permit

the launch azimuth to be implemented (computation time is negligible). With

the possible exception of hardware requirements there is no other reason for

a delay between the receipt of information regarding target and launcher lo-

cations and launch of the vehicle.
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Simulation has shown that the one a miss distance *A* to the inaccuracies in

this technique can easily be reduced to 200 feet. Considerably better accu-

racy may be obtained if empirical coefficients are determined carefully.

The above error does not include the effects of gravitational anomalies.

hardware inaccuracies or measurement errors.
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SECTION Z

DEFINITIONS

The following definitions are given to aid in understanding the discussion

which follows:

Explicit Guidance is a generic term for the class of guidance
equations which are a direct solution of equations of motion.
The equations of motion which are used may, or may not, rep-
resent reality with sufficient accuracy to satisfy mission objec-
tive; there is, however, a restriction in the latter case that the
inaccuracy (which is compensated for by empirical or semi-
empirical methods) must be extremely small.

Simulation is a computer (usually high-speed digital) program
which is an accurate representation of the earth, atmosphere,
missile engine and autopilot, etc., as well as the guidance
equations. This simulation then "flies" the missile and deter-
mines performance capability, workability of the guidance
equations, etc.

Targeting is the utilization of a simulation to define and verify
any empirical constants that may be required by the guidance
equations. For many problems efficient use of the simulation
to obtain the empirical constants requires the use of auxiliary
computer programs; this kind of effort is, of course, part of
targeting. The word targeting is sometimes applied to opera-
tions (carried out at the operational site) which utilize the empir-
ical constants obtained by the process defined above as targeting.
Basic Inertial Coordinates ý, Ti, 4 are earth centered with +
passing through the north pole. These coordinates and their
derivatives are scaled so that the gravitational constant niulti-
plied by the mass of the earth (GM) is unity. At some time dur-
ing the pre-launch operation, the gyros are uncaged. The inertial
coordinate system is defined at this instant and the quantity T
represents the time interval which has elapsed since this instkht.
These coordinates would not necessarily be used in an actual
mechanization, particularly for an inertial system.
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SEC TION 3

A KEPLERIAN SOLUTION

Coordinate Systems

It is necessary to relate the position and velocity of the missile and the

target by means of an inertial coordinate frame. Once this has been

done, any appropriate criteria can be used to develop expressions for

pitch and yaw velocities. Criteria which have been used in the past and

have proven to be very satisfactory are outlined below.

The missile, target and geocentroid define a plane. The yaw component

of velocity is the component of missile velocity normal to this plane

and the pitch component of velocity is the component of missile velocity

in this plane and parallel to the radius from the geocentroid to the

missile. Pitch angles are measured positive up from the normal to

this radius. (See Figure 1 and Appendix A.)

The subscript D is used to denote burnout conditions. Adequate estimation

of PD is straightforward (see Appendix A).

Orbital Parameters

The value of rT is defined as a compromise between minimum re-entry

dispersions, re-entry heating problems, and performance. Actually the

numerical coefficients in the definition of rT (Appendix A) can be chosen

to provide a good approximation to any reasonable functional relationship

for rT. The desirability of steering to a given rT is related to re-entry

effects and is discussed in Section 4.
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Figure 1. Definition of Coordinates
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The expression for the velocity necessary to travel from any point in

space to any other point (assuming no atmosphere and an inverse square

gravitational field) can be derived from Figure 2 and the well known

orbit equation

V 2 =GM( )2 1(1)

where a is the semi-major axis of the orbit. From Figure 2

(2 - r )2 = [r, sin 4 - (2a - rl) sin 2rI 2

+ [r 1 - (2a - rl) cos 2r 1 - r 2 cos P]2

or

rr r.(I cos (2))a = 1 + rl(l + cos 2]1) - r[I + coo + Zrl)] (2)

Combining Equations 1 and 2

rV = r 1\ )r 2(1 =cos40) (3)

r 0 + Cos 2 1 ) cos 4- cos (41 + Zr)

Defining

6 F rV
2
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Figure 2. Orbit Relationships



and choosing r1 as the target and r2 as burnout

2(1 - cos kpl)
6T =r..T()

rD(1 + cos arT) - CO2 4rD- coB ( +rT)

and

V 6 T (5)
T T

from Equation 1

rT (6)

bT

From orbital kinematics (Reference 2)

e sin E = /6(2 -6) sin r (7)

e cos E = 6 - 1 (8)

TFF 3/2 [E 2 - E - t sin E2 + t sin E] (9)

Then

= /{T - 1)2 +6T(Z - 6T) sinZ rT

= - T(2 - 6 T) cos rT (10)
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and

rD

D a

An expression for rD may be found from Equation 3 as follows:

2-* ( " Co O ( + Cox zrD) - Cox SD - cog (*D + 2r)

since*
cog (,D + zrD) = coo % cosozrD - si 4 D sin zrD

Then

sin ZFD = - QI(1 + co. zID) (2l)

where

rD
r1- 

C__ 4
DQT

QI sin *D

2(1 - co* +D)
2Z 6 D II 4n D (Z

-10-
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Squaring Equation 11

2 = 2

sin 2rD= (Q 2 - QI) . 2(Q 2 . Q 1 )QI cos 2rD+ Q cos 2

or

(I+ Q os I r D [2( - Q1)Q1 ] cos 2r +[(Q 2 - 0 1 o1=

Then

2 D Q -(Q2 - -h / 0)2 4 (1 + Q2- Q)2
2l+ Q,-)

2
QI(2- Q 1  11 Q2 + 2 QC1Q 2

1+ Q2
IQ

Obviously the sign of the radical depends on whether a lofted or shallow

trajectory is used (the radical vanishes at kiinimum energy). Since a

slightly lofted trajectory will be used (see Section 4)

Q (QZ - Ql)•' Q? + 2 C1 C1

cos zFD = 1 2 1 (13)
1 +1

A convenient specialized solution. of Kepler's equation (Eq. 9) for ballistic

missile trajectories can be developed as follows:

r
- € cosE= l--J °i

-11



Obviously E = 0 at perigee, and since a is less than the radius of the earth

wr/2 < E < 3w/2 throughout the trajectory. However if

o [ -1I
ET = Cos- C- -- (14)

ED=co CO

are evaluated in the first quadrant then Equation 9 becomes

TFF = G3/2[ET + ED + a(sin ED + sin ET)J (15)
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SECTION 4

NON-KEPLERIAN EFFECTS

Introduction

The two-body point mass central force field problem can always be reduced

to an equivalent one-body problem (Reference 2). For an inverse square

force field this becomes the "Keplerian problem, " and more or less com-

plete analytic treatments have been known for centuries. For practical

purposes on a ballistic missile trajectory the solution to the Keplerian

problem is in error due only to:

a. Atmospheric f ýrces at re-entry

b. The fact that the earth's gravitational field is not exactly
inverse square, but has other latitude dependent terms

c. Local gravitational anomalies, and

d. Solar and lunar gravity.

Fortunately these effects are quite small.

Atmospheric Effects at Re-entr,

For practical purposes the only non-trivial complications arising from

inclusion of a target altitude are due to atmospheric forces at re-entry.

The principal result of these atmospheric forces is to:

a. Increase the time required to reach the target altitude

b. Cause the hit point to be less far "down range" in the
orbit plane, and

c. Impact displacement due to atmospheric (earth)
rotation.

It is convenient to combine (a) and (c) to obtain an "effective" time differ-

ential (which is quite small). Since rT has been defined as a function of

-13-



VT (see Fig. A-3) the two important re-entry variables (V and r) have

been reduced to a one parameter family. With this simplification it is

possible to compensate for re-entry effects (for altitudes of up to one

mile) with an rms error of about 100 ft with the following empirical

equations:

K1 4  14 14 2 14 3 14 4 + (r14 + 14 14RE 0 K + K1 VT +KZTKV+ 4 T \ K VT + K7  T*

+( 4 + 144v + 14  h4 (16)

TRE = Kjo I Ki h T+ 142V (17)

÷ (• + K4VT KiTT)Kh (1T

Equations 16 and 17 are terms in týMT and TF (see Appendix A).

It is of course desirable to have FRE and TRE as small as possible which

would require a very lofted trajectory. However when this effect is

balanced against the requirements of heating and trajectory sensitivity

(miss coefficients) the resulting compromise is a family of trajectories

slightly more lofted than the "minimum energy" family.

Oblate Potential

The earth's potential field is usually represented as

GM r r 5

-- " o J7 (•" inZ sin201+...V +4 09 + D 0- 2

where J and D are constants. The Keplerian analysis assumes that J, D,
and all higher order terms vanish, an assumption that would give intoler-

able error if not compensated for. The basis for this oblate potential
compensation is the perturbation development by Wheelon in Ref. 3.
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The D term is about one tenth percent of the size of J term (not one percent

as stated in Ref. 3) and the higher order terms are even smaller, and since

the error in the J perturbation is larger than this (due to neglect of the

second order terms in the perturbation development) primary consideration

will be given to the first order perturbation of the J term. All residual

errors will then be lumped together and can be treated empirically.

Wheelon develops (Ref. 3 Eqs. 65 - 69) the following expression for cross

range miss (in present notation):

6L= sin AL cos 6 [sin r (X) dy
6 cos r rL(y)

D D 0If

+cosA cosO (r'X a (18)
z Lfr(o f 0 Y

Wheelon now sets r constant and integrates. A more general expression

is

Z JrT
6L ... 2 sin A z cos e L [sin OLJl cos 4JD)fl(4#D)

6 Coss
D cos rD

+cos A cos 0L( JD - sin (PD)fYD (19)

[Wheelon has flMD) = f2(4D) 1]. Expressions for f, and f2 (which will vary

slightly depending on the trajectory used) can now be developed empirically.

For ICBM trajectories of tactical interest the simple expression

f f 2 (K0 + K1BL) + (K2 + K3OL)4* (20)

is very satisfactory.
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Since 6L is effectively a change in the desired yaw plane

-YD coo rD

VyD = 'rT Sin D 6L (21)

An expression similar to Eq. 19 can be developed from Wheelon's

analysis:

6R 2JrT( " co, *)f 3  36 s D( +f 43 -3 siJOA (22)
Sin arD CosFD Dcg

where

.2
Q 2 =sin @L(Z + cos ID + 2 sin LcoL cos A. sin aD

2 2
* + cos A coo . a

The functional form of f3 is chosen to be

?1
• 3 = 1"b (23)

1 + !-(l +.) - lJK

The function f4 arises from a term and thus no neat semi-empirical

relationship can be found by a constant r integration. A satisfactory

representation for ICBM trajectories of tactical interest has been found to be

f4 (sin'O Cos..• Cos. A (K0 O +14,+0 2KO*)*,

-2 sin LCos#L COS A(K+l1-(Z4)

-16- +le



Equations 22, 23 and 24 can be combined with the relationship

6R (25)
rT

To obtain a correction to LPMT (see Fig. A-2).

The oblate potential also changes the time of free flight from that given by

the Keplerian solution. This variation can be approximated empirically by

the expression

TJ (K0 + KI 1L) + (K 2 + K3 OL)4* + (K4 + K 5 L)9 ,

- •*(K 6 + K7 0L) sin 12AzI (26)

Local Gravitational Anomalies

Local gravitational anomalies perturb the trajectory not only in free flight

but in powered flight as well. Unfortunately these anomalies have not been
mapped completely enough to allow a definitive analysis of their effect on

trajectories of general interest. Once this mapping becomes available there

is no conceptual reason why these effects could not be included in an empiri-
cal way, although the amount of information that would have to be stored

might be prohibitive.

-7
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Solar and LAnar Gravity

Solar and lunar gravitational fields perturb the trajectory whenever the

vehicle and the geocentroid are not equidistant from these bodies. The

perturbing acceleration is

A GM GM GM R12 GM Z 6R
pertTT RI R 2 R R 2  R I 1

where

6R -R RI < radius of earth

For the sun

ape rt e

where

Cai z~/day~2(l 7 ) radWo % l°/day m 110"7 -
e sec

76R m wZ(10) ft

so

apert m . 6(10" 6 ft secZaprsun

-16-
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Since

-6
Spertsun ! T apert sunT OF . (2000) m3 feet

then

SSpertsun .7 feet

Rpertsun sin RE

It can similb.rly be shown that Rpert < I foot, and thus effects of solar

and lunar gravity can be ignored.

Residual Errors

After all the preceding empirical and semi-empirical corrections are made

there are still residual errors. These errors are from three primary

sources:

a. Inaccuracies in the Approximating Functions

Inevitable approximations exist in any empirical technique.

This is especially true for the functions given in this

section, since they are primarily a feasibility demon-

4 stration and could certainly be improved.

b. Neglected Effects

All terms except the J term in the potential expansion are
S~examples.

c. Neglect of the Inter-Dependence of the Various EffectsI Trajectory perturbations due to oblateness obviously have

an effect on re-entry perturbations and vice versa.

Likewise trajectory dispersions due to non-nominal missile

parameters affect the oblateness correction (but not re-

entry since "T is a function of V ). It would be possible

to correct for these effects empi'"ically, although they are

quite small.
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A representative plot of these residual errors as determined from simulation

is given in Figure 3. It would of course be possible to tabulate these resid-

ual errors and utilize then to obtain extreme accuracy if a small amount of

prelaunch computation is acceptable.
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Figure 3. Representative Plot of Residual Error.I Determined from Simulation
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APPENDIX A

GUIDANCE EQUATIONS

Equations which can be used to generate thrust termination and steering

commands are discussed in detail in Reference 1. The derivation is lengthy

and will not be given here. These equations are written without reference to

any nominal missile, which means that dispersions due to missile parameter

variations vanish except for secondary variations in the non-Keplerian effects.

The vehicle is steered to obtain V VD, Vy = V D and F= r at burnout,

where the desired quantities are defined from Sections 3 and 4.

An illustrative example of the essential elements of a guidance equation

mechanization is given in the following figures. The symbol T represents

the duration of the computing cycle. Any value of T between 0. 5 and 1. 5

seconds will work equally well for practical purposes.

-23-
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Fig. A-i• Compute time elapsed
since gyro uncaging (TG) ECI missile coordinates

from stable platform

Started

Repeat
Scos10

T rCT oT cos (OT -L+ K 7 TF)

[12 . +T rT cos OT sin (T -L + K7 TF)

v T2 = rT sin + T

v + ______+

P r
4M T = cos- I T r rT T + •RT

MTT

r= sin- 1 VP
Vp + VpD . 1rD= r + Vp (TE ? PT )K61

*D=M " r+rD(E "K0Cos F+ V D cos r1

V. (rT X r) Fig. A-3

y r rT sin tMT

Figure A -2. Coordinate Transformation
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Fig. A -Z3~~4
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Figure A-3. Orbital Paramsters
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Fig. A- 3
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Figure A-4. Perturbation Corrections
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Fig. A-4
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